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HIDING INSTRUCTION CACHE MISS
LATENCY BY RUNNING TAG LOOKUPS
AHEAD OF THE INSTRUCTION ACCESSES

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/067772, filed Dec. 29, 2011, entitled HIDING
INSTRUCTION CACHE MISS LATENCY BY RUNNING
TAG LOOKUPS AHEAD OF THE INSTRUCTION
ACCESSES.

TECHNICAL FIELD

This disclosure relates generally to the field of micropro-
cessors. In particular, this disclosure relates to handling cache
misses using tag lookups that are decoupled from instruction
byte accesses.

BACKGROUND ART

A processor core typically includes an instruction fetch
unit for generating fetch requests to retrieve instructions from
an instruction cache (IC). When an instruction is available
(i.e., a cache hit), the fetched instruction is typically stored in
a fetch queue. When the instruction is not available (i.e., a
cache miss), a memory request is usually generated and sent
to a lower level of memory to retrieve the instruction. The
pipeline may then stall until the instruction becomes available
by servicing the cache miss.

Inrecent processors, the instruction fetch includes a branch
prediction unit (BPU). A current IP is provided, which the
processor core uses to access the BPU that generates predic-
tions for branches that belong to the current instruction fetch
block associated with the current IP. The BPU’s prediction
granularity is N-byte (e.g., 32B, etc.). Based on the prediction
outcomes, the BPU will generate the next fetch IP, which
could be the current IP+N byte (if none is predicted taken), or
the target address of a predicted taken branch. This next IP
becomes the current IP in the next cycle, and is fed back to the
BPU to generate the next IP.

The instruction fetch unit (IFU) is composed of the 3 units.
1) An instruction translation look-aside buffer (ITLB) that
translated the current IP into a physical address, 2) the IC
accessed by the physical address that returns the correspond-
ing instruction bytes, and 3) an instruction stream buffer
(ISB) that temporarily stores the cache lines sent by the lower
level memory (e.g., L.2) before being written into the IC
(which may handle IC misses). The IFU’s fetch access may
occur at M-byte granularity (e.g., 16B), which may be equal
to or lower than BPU’s prediction bandwidth (N=M or N>M).

The IFU is a slave to the BPU and operates in a separate
pipeline. The IFU’s fetch follows the IPs that are generated by
the BPU. If the BPU’s prediction bandwidth is higher than the
IFU’s fetch bandwidth (e.g., N=32B vs. M=16B), there is a
FIFO queue called a branch prediction queue (BPQ) that
bridges the bandwidth gap between the two pipelines. The
BPU makes 32B predictions every cycle and allocates up to
two entries that contain the fetch IPs. The number of BPQ
entry writes is determined by N/M. The IFU reads one BPQ
entry at a time, obtains the fetch IP, accesses the ITLB and IC
sequentially, then sends the corresponding instruction bytes
(e.g., 16B) down the pipeline for instruction decode.

Because of the bandwidth mismatch (e.g., N>M) and pos-
sible stall conditions in the IFU (e.g., IC miss), the BPU tends
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2

to run ahead of the IFU and the BPQ tends to hold multiple
valid entries that tell where for IFU needs to fetch instructions
from in the future. The BPQ may become full, which may
result in a stall of the BPU’s prediction pipeline until it finds
a free BPQ entry. Meanwhile, IFU will continue to consume
the BPQ entries and send instruction bytes down the pipeline.

There could be cache misses in the ITLB or IC when the
IFU is unable to send the instruction bytes. An ITLB miss
occurs when ITLB cannot find the matching entry with a
physical address corresponding to the current fetch IP. In this
case, the IFU stalls and sends a request to the page miss
handler (PMH). The IFU resumes fetching after the PMH
returns the physical addresses. In a similar fashion, an IC miss
can occur when the IC cannot find the matching entry with the
instruction bytes corresponding to the current physical fetch
address. In this case, the IFU stalls, allocates an ISB entry (for
the miss), and sends a fetch request to the lower level memory.
The fetch resumes after the lower level memory returns the
cache line back to the ISB. The cache lines in the ISB will be
eventually be written into the IC, which is determined based
on a couple of restrictions related to the inclusion handling
and the IC write port availability. The IFU is allowed to send
the instruction bytes either directly from the ISB or from the
IC after the ISB bytes are written back to the IC.

This stall may result in a delay in the execution of instruc-
tions, and thus reduce performance of the processor core. In
order to improve performance of the processor, the IFU may
generate speculative fetch requests to the lower level memory
before IFU encounters an actual miss in attempt to hide
delays. The speculative fetch requests could be wasteful if the
matching cache line already exists in the IFU. Because the
existence of the cache line is not known unless an IFU is
looked up, a processor may use a mechanism to filter out
unnecessary speculative fetch requests, or may access the
unused read port while the IFU is stalled waiting for a prior
miss to be serviced.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The same reference numbers in differ-
ent figures indicate similar or identical items.

FIG. 1 is a block diagram of an illustrative processor core.

FIG. 2 shows illustrative pipelines including a branch pre-
diction pipeline that is decoupled from an instruction fetch
data pipeline.

FIG. 3 is a flow diagram of illustrative process to handle
instruction cache misses using instruction cache tag lookups.

FIG. 4 is a flow diagram of illustrative process to perform
the instruction cache data accesses.

FIG. 5 shows illustrative pipeline that includes an example
instruction cache miss and prefetched data following the
miss.

FIG. 6 is a flow diagram of an illustrative process to man-
age a hit vector queue.

FIG. 7 is a block diagram of an illustrative architecture of
a system to handle cache misses using tag lookups that are
decoupled from instruction byte accesses.

DETAILED DESCRIPTION

Overview

disclosure provides techniques and apparatuses to enable
early, run-ahead handling of IC and ITLB misses by decou-
pling the ITLB and IC tag lookups from the IC data (instruc-
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tion bytes) accesses, and making ITL.B and IC tag lookups run
ahead of the IC data accesses. This allows overlapping the
ITLB and IC miss stall cycles with older instruction byte
reads or older IC misses, resulting in improved performance.

The techniques and apparatuses described herein may be
implemented in a number of ways. Example implementations
are provided below with reference to the following figures.

FIG. 1 is a block diagram of an illustrative processor core
100. The processor core 100 may be one of a plurality of
processor cores included in a processor unit.

The processor core 100 may include an instruction cache
(IC)102, an instruction stream buffer (ISB) 104 an instruction
fetch unit (IFU) 106, and a branch prediction unit (BPU) 108.
The IFU 106 may be in communication with the IC 102 and
the ISB 104. The IFU 106 may also be in communication with
the BPU 108. The processor core 100 may also include an
instruction translation look-aside buffer (ITLB) 112 in com-
munication with a page miss handler (PMH) 114. The ITLB
112 may be in communication with the IFU 106, the IC 102,
and the ISB 104.

The IC 102 may store instructions, which can be retrieved,
decoded and issued for execution by the processor core 100.
The IFU 106 may perform fetch (and prefetch) operations to
the ISB 104, the IC 102, and lower level memory 110 using
predictions obtained from the BPU 108.

In some embodiments, the processor core 100 may include
a pOP issue 116 to issue, for execution by an execution stage
118, micro-operations corresponding to instructions of sets of
instruction data and/or instruction streaming buffer 104. The
processor may also include a retirement stage 120 to retire the
micro-operations upon completion of their execution by the
execution stage 118.

FIG. 2 shows illustrative pipelines 200 including a branch
prediction unit (BPU)/IFU tag pipeline 202 that is decoupled
from an instruction fetch data pipeline 204. In various
embodiments, the BPU/IFU tag pipeline includes a BPU 206
and an [FU tag 208. The IFU is decomposed into the IFU tag
208 and IFU data 210. The IFU tag 208 includes an instruc-
tion translation look-aside bufter (ITLB), an IC tag (i.e., a
cache line tag match using a physical fetch address to identify
which cache line to access), and an ISB tag. The IFU data 210
includes an IC data (that contains the instruction bytes in the
IC) and ISB data (that contains the instruction bytes in the
ISB).

In accordance with various embodiments, the units that
belong to [FU tag 208 are made accessible inthe BPU/IFU tag
pipeline 202 so that the ITLB and IC hit/miss results can be
discovered in parallel with the BPU lookups. This allows the
IFU tag accesses to occur in a higher-bandwidth pipeline
(N>M), and to encounter ITLB or IC misses before the IFU
data 210 actually fetches the instruction bytes in the IFU data
pipeline 204. If IFU tag accesses (in parallel with BPU) are
sufficiently running ahead of IFU data accesses, The ITLB or
IC miss latency is partially or completely hidden, which is
discussed in further detail below.

Inthe decoupled IFU, the IFU data 210 no longer performs
the address translation or tag lookups, but it still needs to
know where to fetch the instruction bytes from. This may be
accomplished using a hit vector queue (HVQ). The HVQ may
have the same number of entries as the BPQ, and read/write
may be managed in the same way. Instead of the branch
prediction information and IPs, the HVQ stores hit vectors
that tell either IC set and ways, or ISB entry indices.

Basic Algorithms:

In parallel with BPU lookup, the IFU tag 208 is looked up
with the fetch address IP. This lookup may result in the
following cases: (1) An ITLB miss may occur, which may
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cause the BPU/IFU tag pipeline to stall. An ITLB miss
request may then be sent to the PMH. Sometime later, the
PMH returns the address translation, then the BPU/IFU tag
lookup resumes.

(2) An ITLB hit and IC tag hit may occur, which may result
in the IC set and way address to be written into the HVQ.
Later, the IFU data reads the HVQ entry, and accesses the IC
line using the given set and way address.

(3) An ITLB hit, IC tag miss, and ISB tag miss may occur
(i.e., a “true miss” case in which the IFU does not contain the
necessary instruction cache line). In this case, an ISB entry
may be allocated and an external fetch request is sent to the
lower level memory (e.g., L.2). The IFU tag 208 writes an
index of the newly allocated ISB entry into the HVQ. How-
ever, the BPU/IFU tag pipeline 202 continues to run without
stall until other stall conditions (e.g., ISB or BPQ full) occur.
Later, the IFU data 210 reads an HVQ entry, and checks if the
corresponding ISB entry has received the cache line from the
lower level memory. If the instruction bytes are not yet avail-
able, the IFU data will be stalled until the lower level memory
returns the corresponding cache line. If the instruction bytes
are available in the ISB, the IFU data sends them down the
pipeline.

(4) ITLB hit, IC tag miss and ISB tag hit may occur, where
amatching ISB entry was already allocated by a previous true
miss. The IFU tag 208 writes the index of the ISB entry that it
just hit into the HVQ. Here, the BPU/IFU tag pipeline 202
continues to run without stall until other stall conditions (e.g.,
ISB or BPQ/HVQ full) occur. Later the IFU data reads a HVQ
entry and check if the corresponding ISB entry has received
the cache line from the lower level memory. If the cache line
is not yet available, the IFU data will be stalled until the lower
level memory returns the corresponding cache line. If the
instruction bytes are available in the ISB, the IFU data 210
sends the instruction bytes down the pipeline.

There are cases in which the IFU tag initially has either a
true miss or an ISB tag hit (so an ISB index was written into
the HVQ), but the cache line from ISB is written into the IC so
the IFU data needs to get the instruction bytes from the IC
instead of the ISB. This may be handled by updating the HVQ
entries as discussed in detail with reference to FIG. 6. An ISB
entry may receive the cache line from the lower level memory.
When this cache line is written into the IC, all the valid entries
in the HVQ may be checked to see if any of the valid entries
have the matching ISB index. Then, the HVQ entries may be
updated so that they have the set and way address of the IC
entry that the ISB entry is being written into. Then, the ISB
entry (both tag and data) is invalidated and becomes ready for
new allocations.

Once the ISB IC fill and HVQ update is complete, all the
subsequent lookups in the IFU data 210 that previously
wanted to access the ISB entry will get the instruction bytes
from the IC entry instead. All the subsequent lookups in the
IFU tag 208 may now hit in the IC entry. In some instances,
there could be cases in which the IFU tag initially hit in either
IC or ISB tag, but the cache line was replaced or removed
before the IFU data uses the line. In a processor core that
provides “pipeline inclusion”, the processor core guarantees
an availability of the original cache line during the entire
lifetime of an instruction from the fetch to retire. Therefore,
this scenario (a line is replaced before use) is invalid and does
not need to be addressed here. This inclusion property may be
implemented by a separate mechanism. If the machine does
not natively provide the necessary inclusion property, a simi-
lar IC in-use mechanism may be implemented to support
pipeline inclusion.
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Other Embodiments:

The “BPU based run-ahead handling of ITLB/IC miss”
portion of the current disclosure does not necessary need the
HVQ. In some embodiments, implementations may benefit
from the same run-ahead property without relying on the
HVQ although the HVQ may enable an inexpensive imple-
mentation. Other possible configurations include: (1) Repli-
cate the IFU tag, and make it accessible in the BPU pipeline.
All the access to the IFU data may be performed in the
conventional way without the HVQ. (2) Move the entire [FU
into the BPU pipeline to get the run-ahead property. The BPQ
may be converted to the instruction byte buffers. When the
ISB receives the cache line from the lower level memory, the
corresponding byte buffer entries receive the cache line
directly from the ISB. All instruction fetch (previously from
IFU data) may be made directly from the byte buffer.
ustrative Operation

FIGS. 3, 4, and 6 show processes that are illustrated as a
collection of blocks in a logical flow graph, which represent a
sequence of operations that can be implemented in hardware,
software, or a combination thereof. The order in which the
operations are described is not intended to be construed as a
limitation, and any number of the described blocks can be
combined in any order and/or in parallel to implement the
process. The processes are described with reference to the
environment 100 and the pipelines 200. Of course, the pro-
cesses may be performed in other similar and/or different
environments.

FIG. 3 is a flow diagram of illustrative process 300 to
handle instruction cache misses using instruction cache tag
lookups. The process 300 includes a BPU pipeline flow (using
the BPU 206) and an IFU tag pipeline flow (using the IFU tag
208), which are performed in parallel. The process 300 may
begin at 301 following a reset.

At 302, the BPU pipeline flow begins. For the current
address, the BPU predicts the next address of the one or more
instructions. In some embodiments, the operation 302 may be
a 32 byte prediction per cycle. Thus, the BPU predicts
branches in the current address to predict the next addresses.

At 304, the predicted addresses are written into the BPQ. In
some instances, up to two entries may be written in the BPQ
(e.g., 16 bytes per entry). The operations 302 and 304 may be
repeated until the BPQ is full. In some embodiments, the [FU
tag 208 performs operations 306-320 in parallel with the
operations 302-304 performed by the BPU.

At 306, for the current address (determined at the operation
302), the IFU tag 208 performs a lookup of the ITLB, IC and
ISB tags.

At 308, the IFU tag 208 detects whether an ITLB hit
occurs. When an ITLB miss occurs (following the “no” route
from the decision operation 308), the process sends a request
to the PMH for an address translation at 310.

At 312, the process detects whether an ITLB miss is
resolved. When the miss is unresolved (following the “no”
route from the decision operation 312), the BPU and IFU
pipelines stall at 314 until the PMH returns an address trans-
lation back. Then the current address is looked up again
starting from the operation 302 when the miss is resolved
(following the “yes” route from the decision operation 312).
Returning to the decision operation 308, in an ITL.B hit, [TLB
provides the translated address and moves onto an operation
316 (following the “yes” route from the decision operation
308).

At 316, the I[FU tag 208 detects whether an IC hit or an ISB
hit occurs. In an IC hit, the instruction is already in the IC.
When an ISB hit occurs, the instruction byte may or may not
be available. However, the IFU tag only checks to see if the
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6

ISB hit occurs while the status of the instruction bit is detected
in a separate process, which is decoupled from the process
300.

At 318, when a hit occurs at 316 (following the “yes” route
from the decision operation 316), then the IFU tag has the set
and ways address and the IFU tag writes an IC set/way
address or ISB index to a hit vector queue (HVQ) 322. In
some instances, the HVQ may receive up to two entries at 16
bytes per entry. At 318, the IFU tag records the address into
the HVQ. Later, the IFU data pipeline reads from the HVQ
322 (described with reference to FIG. 4), and the IFU data
then knows where to read the bytes from based on the hit
vector written at the operation 318.

When no IC hit or ISB hit occurs at the decision operation
316, then processing continues at an operation 320 (following
the “no” route from the decision operation 316). At 320, the
IFU tag allocates an ISB entry for the current address and
generates a fetch request to the lower level memory. The IFU
tag may send an index of the newly allocated ISB entry, which
is used in the decoupled process 400 that is described next.
Following the operation 320, the IFU tag 208 proceeds to the
operation 318 to write the ISB index (that just was allocated
at 320) to the HVQ 322.

Returning to the operation 318, three different outcomes
may occur: (1) an IC hit may occur at the operation 306, (2) an
ISB hit may occur at the operation 306, or (3) a newly allo-
cated ISB index may have a fetch request from the operation
320.

FIG. 4 is a flow diagram of illustrative process 400 to
perform the instruction cache data accesses. The process 400
operates in conjunction with the process 300. As described
above, and in greater detail below, the process 400 may ben-
efit from the fetch requests performed at the operation 320 in
the process 300, which may reduce or prevent stalls in the
process 400. The process 400 may be performed at least in
part by the IFU data 210.

At 402, the process 400 reads a hit vector from an HVQ
entry in the HVQ 322. The HVQ 322 may store an IC set/way
address or ISB index, instead of the full fetch address that is
typically stored by the BPQ in prior implementations.

At 404, the process 400 determines whether the HVQ 322
is empty. When the HVQ is empty (following the “yes”
route), then the process may stall until an entry in the HVQ
becomes available. Otherwise, the process 400 may advance
to an operation 406 (following the “no” route from the deci-
sion operation 404). Thus, the operations 402 and 404 retrieve
data from the HVQ 322, which is then processed by the [FU
data 210 as discussed next.

At 406, the IFU data 210 may receive the hit vector. The
IFU data 210 may determine where to access the IC or the ISB
to retrieve the instruction.

At 408, the IFU data 210 may detect whether the hit vector
is in the IC. When the hit vector is in the IC, then the IFU data
210 has the bytes. Thus, when the hit vector points to the IC
(following the “yes” route), then the IFU may read the bytes
and send down the instruction to the pipeline at 410.

When the hit vector does not point to the IC (following the
“no” route from the decision operation 408), then the hit
vector points to the ISB. At 412, the IFU data 210 detects
whether the hit vector points to the ISB and the bytes are ready
(which were requested in a fetch request at the operation 320
in advance). Ifthe bytes are ready (following the “yes” route),
then the IFU data 210 reads the bytes and sends the bytes
down to the pipeline in the operation 410. In this situation, the
IFU data 210 does not stall because the bytes were requested
in advance and received when needed by the IFU data 210.
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When the bytes are not ready at the decision operation 412
(following the “no” route), then the IFU data 210 may wait
until the data is received from the memory and, after receipt,
may store the data. Here, the IFU data 210 stalls when the
bytes are not ready. The process 400 continues at the decision
operation 408 and exits at the operation 410 when the bytes
are ready from the ISB.

Asdescribed with reference to FIGS. 3 and 4, the ISB is the
bridge between the IC and the lower level memory. When a
fetch request is outstanding, the IFU tag may have a corre-
sponding entry for the address of the ISB (written at the
operation 318), but the bytes may not be ready for the IFU
data 210. Thus, the IFU data 210 may have to wait for the ISB
to retrieve the bytes from the lower level memory (e.g., [.2) at
the operation 414.

When the process 300 is running sufficiently ahead of the
process 400, the IFU tag 208 may send the fetch requestat 318
at a first time. At a second time, the IFU data 210 may
determine if the bytes are ready at the decision operation 412.
Ifthe ISB can retrieve the bytes from the lower level memory
between the first time and the second time, then the IFU data
210 will not stall at 414, but will have the bytes ready and send
them to the pipeline via the operation 410. Thus, the decou-
pling of'the pipelines for the IFU tag 208 and the IFU data 210
may reduce stalls when the IFU tag performs the fetch
requests at the operation 318 sufficiently ahead of the time the
IFU data 210 looks for the bytes at the decision operation 412.

FIG. 5 shows illustrative pipelines 500 that includes an
example instruction cache miss and prefetched data following
the miss. The pipelines 500 include a BPU/IFU tag pipeline
502 and an IFU data pipeline 504.

In this example, in the BPU/IFU tag pipeline 502, a first
lookup 506 for an address 0x40 (which may cover both
addresses 0x40 and 0x50 because BPU’s 32B fetch granular-
ity) may occur and may be a true miss (indicated by the
dashed border around the operations). In the pipeline at loca-
tion STG4, the IFU tag may allocate an ISB entry and send a
request for the address 0x40 via the operation 320. Since the
IFU tag pipeline does not need the instruction bytes, the [FU
tag pipeline 502 continues to process the next line (which may
be 0x60) without being stalled. The second lookup for an
address 0x60 may hit in the ISB entry allocated by a previous
lookup 506 because the addresses 0x40 and 0x60 may belong
to a same cache line (64B granularity in this example).

Continuing with the example, the BPU/IFU tag pipeline
502 may have hits at 0x10, 0x200 at 508, 510, which may be
processed by the IFU tag via the operation 318. The BPU/IFU
tag pipeline 502 may then miss again at 0x800 512 and send
out another fetch request via the operation 320. The BPQ/IFU
tag pipeline 502 keeps moving after sending the request.

Meanwhile, the IFU data pipeline 504 may read out the hit
vector from the HVQ 322. At 0x40 514, the IFU data 210 may
have to stall and wait for the instruction to be retrieved by the
ISB at the operation 414 in FIG. 4. Thus, the IFU data 210
may stall until the bytes become available. After the bytes
come back and are successfully sent to the pipeline at 410 for
0x40 516, then the IFU data pipeline 504 may read the next hit
vector at 402, thus 0x50 518. The IFU pipeline continues to
process and has hits, which can be sent down to the pipeline
via the operation 410. For example, the IFU tag pipeline may
have an IC hit at 316, which results in the process 400 moving
from the decision operation 408 to the operation 410 (read
from IC data).

Continuing with the example, the IFU tag pipeline 502 has,
by running ahead of the IFU data pipeline 504, already send
a fetch request for the bytes for 0x800. When the IFU data
pipeline 504 reads the hit vector for 0x800 520, then the bytes
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may be ready because of the prior request 512 by the IFU tag
pipeline 502. Thus, the IFU data pipeline 504, may detect that
the bytes are ready at the decision operation 412 for the
address 0x800 and proceed (via the “yes” operation) to the
operation 410 and send the bytes down to the pipeline without
have to stall via the operation 414. The stall is avoided
because the IFU tag pipeline sends the request for the bytes in
advance of the processing of this address before the IFU data
pipeline 504 processes the corresponding hit vector for this
address. Thus, some stalls may be avoided in the IFU data
pipeline 504, which may increase throughput and efficiency
of the processing core.

FIG. 6 is a flow diagram of an illustrative process 600 to
manage a hit vector queue. As discussed in FIG. 3, the IFU tag
208 may initiate a fetch request for bytes using the ISB at the
operation 320. At the operation 318, the IFU tag 208 may
write an ISB index into the HVQ. However, before the I[FU
data 210 reads the hit vector for the ISB, the stream buffer
may have written the bytes to the IC and deallocated the
stream buffer. In this situation, the hit vector for the bytes
needs to be updated to reflect the location in the IC. The
process 600 accomplishes this update. In some embodiments,
the process 600 may be implemented with the process 300
and/or the process 400.

At 602, the IFU tag 208 may determine from an IFU tag
lookup, a location of the bytes in the IC or the ISB and then
generate a write (viathe operation 318 in FI1G. 3) that includes
a set/way address for the IC or an ISB entry index.

At 604, the IFU tag 208 may store the hit vector into the
“head” entry in a FIFO queue. The operations 602 and 604
may be similar to the operation 318.

At 606, the process 600 may detect whether an ISB to ICAill
has occurred (e.g., ISB index x is filled into IC set/way
address y), which may cause an update of the hit vector when
the fill has occurred (following the “yes” route).

At 608, following the “yes” route from the decision opera-
tion 606, the process 600 may look up HVQ to locate the
entries with matching ISB index.

At 610, the process may modify HVQ to update the hit
vector. For example, the process may update {ISB, index x}
to {IC, set/way address y}. Then, the ISB entry (both tag and
data) may be invalidated and becomes ready for new alloca-
tions. Thus, when the IFU data 210 reads the hit vector, then
the IFU data 210 may process the hit vector as an IC hit viathe
operations 408 and 410 shown in FIG. 4. The process may
continue from the operation 610 to an operation 612.

When no fill has occurred at the decision operation 606
(following the “no” route), or after finishing the operations
608-610, then at 612, the process may detect whether the [FU
data 210 has read the HVQ at the operation 406. If there is no
read (following the “no” route), then the process 600 may
loop back to the operation 602. When the there is a read
(following the “yes” route from the decision operation 612),
then processing may continue at 614.

At 614, the process 600 may read the hit vector from the
“tail” entry of the FIFO queue.

At 616, the process may send the hit vector to the IFU data
210, which is received at the operation 406 shown in FIG. 4.
The operations 614 and 616 may be similar to the operation
402.

Tlustrative System

FIG. 7 is a block diagram of an illustrative architecture of
a system to handle cache misses using tag lookups that are
decoupled from instruction byte accesses. The system 700
may include one or more processors 702-1, . .., 702-N (where
N is a positive integer=1), each of which may include one or
more processor cores 704-1, . . ., 704-M (where M is a
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positive integer=1). In some implementations, as discussed
above, the processor(s) 702 may be a single core processor,
while in other implementations, the processor(s) 702 may
have a large number of processor cores, each of which may
include some or all of the components illustrated in FIG. 7.
For example, each processor core 704-1, . . ., 704-M may
include an instance of logic 706 for interacting with a register
file 708-1, . . ., 708-M and/or performing at least some of the
operations discussed herein. The logic 706 may include one
or more of dedicated circuits, logic units, microcode, or the
like.

The processor(s) 702 and processor core(s) 704 can be
operated, via an integrated memory controller (IMC) 710 in
connection with a local interconnect 716, to read and write to
a memory 712. The processor(s) 702 and processor core(s)
704 can also execute computer-readable instructions stored in
a memory 712 or other computer-readable media. The
memory 712 may include volatile and nonvolatile memory
and/or removable and non-removable media implemented in
any type of technology for storage of information, such as
computer-readable instructions, data structures, program
modules or other data. Such memory may include, but is not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology. In the case in which there are multiple
processor cores 704, in some implementations, the multiple
processor cores 704 may share a shared cache 714, which
may be accessible via the local interconnect 716. Addition-
ally, storage 718 may be provided for storing data, code,
programs, logs, and the like. The storage 718 may include
solid state storage, magnetic disk storage, RAID storage sys-
tems, storage arrays, network attached storage, storage area
networks, cloud storage, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, or any other medium which can be used to store desired
information and which can be accessed by a computing
device. Depending on the configuration of the system 700, the
memory 712 and/or the storage 718 may be a type of com-
puter readable storage media and may be a non-transitory
media.

In various embodiments, the local interconnect 716 may
also communicate with a graphical controller (GFX) 720 to
provide graphics processing. In some embodiments, the local
interconnect 716 may communicate with a system agent 722.
The system agent 722 may be in communication with a hub
724, which connects a display engine 726, a PCle 728, and a
DMI 730.

The memory 712 may store functional components that are
executable by the processor(s) 702. In some implementa-
tions, these functional components comprise instructions or
programs 732 that are executable by the processor(s) 702. The
example functional components illustrated in FIG. 7 further
include an operating system (OS) 734 to mange operation of
the system 700.

The system 700 may include one or more communication
devices 736 that may include one or more interfaces and
hardware components for enabling communication with vari-
ous other devices over a communication link, such as one or
more networks 738. For example, communication devices
736 may facilitate communication through one or more of the
Internet, cable networks, cellular networks, wireless net-
works (e.g., Wi-Fi, cellular) and wired networks. Compo-
nents used for communication can depend at least in part upon
the type of network and/or environment selected. Protocols
and components for communicating via such networks are
well known and will not be discussed herein in detail.

The system 700 may further be equipped with various
input/output (/O) devices 740. Such I/O devices 740 may
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include a display, various user interface controls (e.g., but-
tons, joystick, keyboard, touch screen, etc.), audio speakers,
connection ports and so forth. An interconnect 724, which
may include a system bus, point-to-point interfaces, a chipset,
or other suitable connections and components, may be pro-
vided to enable communication between the processors 702,
the memory 712, the storage 718, the communication devices
736, and the 1/O devices 740.

Conclusion

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as illustrative forms of implementing the
claims.

What is claimed is:

1. A processor comprising:

a branch prediction unit (BPU) to create branch predictions

and fetch addresses;

an instruction fetch unit (IFU), coupled with the BPU, the

IFU including

an [FU tag unit to:

perform instruction translation look-aside buffer (ITLB)
and instruction cache (IC) tag lookups and

send a fetch request to a page miss handler (PMH) when
an ITLB miss occurs, or to lower level memory when
an IC miss and an instruction stream buffer (ISB) miss
occurs; and

an IFU data unit to:

retrieve instruction bytes from the IC or the ISB based on
the tag lookups, and

send the instruction bytes through decode logic to an
execution pipeline.

2. The processor as recited in claim 1, wherein the IFU tag
unit to store an IC set and way address or an ISB index in a hit
vector queue (HVQ).

3. The processor as recited in claim 2, wherein the IFU data
unit retrieves, from the HVQ, a hit vector that includes the IC
set and way address or the ISB index.

4. The processor as recited in claim 3, wherein the HVQ to
replace the ISB index after a corresponding instruction is
written into the IC, the HVQ to replace the ISB index with the
IC set and way address for the corresponding instruction
written into the IC.

5. The processor as recited in claim 1, wherein the BPU and
IFU tag unit to perform operations in a BPU/IFU tag pipeline
that runs ahead of an IFU data pipeline that retrieves the
instruction bytes from the IC or the ISB.

6. The processor as recited in claim 1, wherein the [FU data
unit to stall when the fetch request is not fulfilled after the IFU
data accesses an ISB entry indexed by a hit vector and bytes
are not ready.

7. The processor as recited in claim 1, wherein the BPU/
IFU tag pipeline stalls when an ITLB miss occurs.

8. The processor as recited in claim 1, wherein the BPU and
the IFU tag unit operate in parallel, the IFU tag receiving a
current fetch address from a next instruction pointer logic
shared with the BPU.

9. The apparatus as recited in claim 1, wherein the BPU to
write the branch predictions into a branch prediction queue
(BPQ), and wherein the BPU/IFU tag pipeline to stall when
the BPQ is full until the IFU data unit consumes and deallo-
cates an entry from the BPQ.

10. An apparatus comprising:

a first logic to create branch predictions and fetch

addresses;
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a second logic, coupled with the first logic, to send an
instruction translation buffer (ITLB) request to a page
miss handler (PMH) when an ITLB miss occurs, and a
fetch request to lower level memory when an instruction
cache (IC) miss and an instruction stream buffer (ISB)
miss occurs for the fetch addresses; and

a third logic to retrieve instruction bytes from the IC or the
ISB based on tag lookups, the retrieved bytes sent to an
execution pipeline.

11. The apparatus as recited in claim 10, wherein the sec-
ond logic is an instruction fetch unit (IFU) tag unit to store an
IC set and way address or an ISB index in a hit vector queue
HVQ).

12. The apparatus as recited in claim 11, wherein the third
logic is an IFU data unit to that receive, from the HVQ, a hit
vector that includes the IC set and way address or the ISB
index.

13. The apparatus as recited in claim 10, wherein the first
and second logic run ahead of the third logic such that the
fetch request is fulfilled prior to the third logic, retrieval of the
instruction bytes from the ISB.

14. The apparatus as recited in claim 10, wherein the third
logic to stall when the fetch request is not fulfilled when upon
access of the ISB entry indexed by a hit vector and corre-
sponding bytes are not ready in the ISB.

15. The apparatus as recited in claim 10, wherein the first
logic and the second logic perform in parallel in a shared
pipeline.

16. A computer-implemented method comprising:

generating branch predictions and fetch addresses in a first
pipeline;
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performing, in the first pipeline, instruction translation
look-aside buffer (ITL.B) and instruction cache (IC) tag
lookups for the fetch addresses;
sending, in the first pipeline, a fetch request to lower level
memory when an IC miss and an instruction stream
buffer (ISB) miss occur; and

retrieving, using a second pipeline, instruction bytes from

the IC or the ISB based on the tag lookups, the instruc-
tion bytes from the ISB including instruction bytes
retrieved in advance from the fetch request.

17. The method as recited in claim 16, further comprising:

storing, in a first pipeline, the IC set and way address or an

ISB index in a hit vector queue (HVQ); and

retrieving, in the second pipeline, the IC set and way

address or the ISB index from the HVQ.

18. The method as recited in claim 16, further comprising
replacing the ISB index with the IC set and way address after
a corresponding instruction is written into the IC.

19. The method as recited in claim 16, wherein the first
pipeline runs ahead of the second pipeline such that the fetch
request is performed ahead of the retrieving instruction bytes
from the ISB to avoid a stall in the second pipeline.

20. The method as recited in claim 16, wherein the gener-
ating the branch predictions and the performing the ITL.B and
IC tag lookups occur in parallel.

21. The method as recited in claim 16, further comprising
stalling the second pipeline when the fetch request is not
fulfilled prior to the retrieving of corresponding instruction
bytes.



